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Introduction 
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Thermal Infrared Focal Plane Arrays  
for Earth Science 

•  Thermal infrared focal plane arrays (FPAs) for a variety of Earth 
Science related applications 
–  Geology, ocean and ice changes, de-forestation, forest fires, soil moisture and 

plant health, weather, gas detection, pollution monitoring, … 

•  Infrared band of interests 
–  3 – 5  μm MWIR atmospheric transmission window 
–  8 – 14  μm LWIR atmospheric transmission window 
–  Outside transmission windows, e.g., λcutoff ~ 15.4  μm for atmospheric sounding 

•  Focal plane arrays needed for  
–  Imaging 
–  Spectral imaging (more demanding) 

•  Desired infrared FPA properties 
–  Customizable cutoff wavelength 
–  High operability, spatial uniformity, temporal stability, scalability, and affordability 
–  Low dark current and high QE 
–  Higher operating temperature, less demanding cooler 
–  Reduced mass, volume, power 
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Traditional Bulk Infrared Material  
Cutoff Wavelength Coverage 

•  MCT is the most successful infrared material to date 
–  Adjustable band gap covering NIR to VLWIR.  Long τSRH. 
–  Soft and brittle. Requires expert handling in growth, fabrication, storage. 
–  Longer λcutoff	, high Hg fraction, progressively more challenging 

•  FPAs based on (near) lattice-matched bulk III-V semiconductors are 
highly successful in a few cases 
–  SWIR InGaAs on InP performs at near theoretical limit 

•  Single color, limited cutoff wavelength adjustability 

–  InSb dominates MWIR market, despite lower operating temperature 
•  Fixed cutoff wavelength, single color 

–  Lacking the continuous cutoff wavelength adjustability of MCT 
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Semiconductor IR Material  
on Available Substrates 

•  MCT grown on CZT (CdZnTe) substrate covers full range of infrared 
•  In0.53Ga0.47As grown on InP substrate has ~1.7 µm cutoff wavelength (covers SWIR) 
•  InSb grown on InSb substrate has 5.2 µm cutoff wavelength (covers MWIR) 

1.0 µm 

1.5 µm 

  5 µm 
10 µm 

Visible 

Infrared 

Substrates: GaAs InP InSb InAs GaSb CZT* 
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•  Quantum well infrared photodetectors (QWIPs)   

 

•  Multi-band QWIPs 

 

•  Quantum dots (QDIPs) 

 

  

•  Type-II superlattice (T2SL) Barrier IR Detector 

Adjustable λc	with III-V Quantum Structures 
Development at JPL Center for Infrared Photodetectors 

1Kx1K LWIR QWIP 

1Kx1K LWIR T2SL 

1Kx1K MW/LW Dualband QWIP 

1Kx1K LWIR QDIP 

1Kx1K MWIR T2SL 

320x256 LWIR T2SL 

640x512 LWIR QDIP 
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Quantum Well Infrared Photodetector (QWIP) 

•  III-V semiconductor FPA “-ility” advantages 
–  High operability, uniformity, large-format capability, producibility, affordability  
–  Temporal stability (low 1/f noise).  No need for frequent system recalibration. 

•  QWIP FPAs successfully deployed in LandSat-8, HyTES 
•  QWIP Challenges 

–  Requires more cooling to control thermal dark current.  Higher generation-recombination 
(G-R) rate from fast LO phonon scattering.  

–  Low external QE.  Needs light coupling structure for normal-incidence absorption. 
•  Being addressed in R-QWIP by K. K. Choi - Resonator pixel concept. 
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‒  Multiple quantum wells between emitter 
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Type-II Superlattice  
Barrier Infrared Detector 
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Concept and Theoretical Foundation of  
Superlattice Infrared Detectors - Caltech Connection 

•  Originally proposed for HgTe/CdTe superlattice 
–  Key advantages of superlattice for infrared detection pointed out in 1983 MCT SL paper 

•  Subsequent focus on superlattices based on the antimonides material system 
–  Smith & Mailhiot 1987 paper considered the seminal work in T2SL infrared detectors 

Smith, McGill & Schulman (Caltech) 
 Appl Phys Lett (1983) 
 
Advantages of MCT superlattices (SL IR 
detectors in general) 

Schulman & McGill  (Caltech) 
 Appl Phys Lett (1979) 
 
MCT superlattice IR detector 

Smith & Mailhiot  (LANL & Xerox) 
 J Appl Phys (1987) 
 
InAs/GaInSb strained type-II superlattices 
IR detector 

G. C. Osbourn  (Sandia) 
 J Appl Phys (1982) 
 
Strained layer superlattice from 
lattice matched materials 

G. C. Osbourn (Sandia) 
 J Vac Sci Tech B (1984) 
 
InAsSb Strained layer superlattice 
for LWIR detector 

Darryl Smith: Caltech thesis advisor of Gordon Osbourn 
 
Tom McGill: Caltech thesis advisor of Joel Schulman & 
Christian Mailhiot 
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Antimonides Material System  
for Type-II Superlattices 

•  Material system includes InAs, GaSb, 
AlSb and their alloys 
–  Nearly lattice matched (~6.1 Å) 

•  Alloys with GaAs, AlAs, and InSb adds 
even more flexibility 

•  GaSb (2”,3”,4”, …) and InAs substrates 

•  Three types of band alignments 
–  Type-I (nested, straddling) 
–  Type-II staggered  
–  Type-II broken gap (misaligned, Type-III) 

•  Unique among common 
semiconductor families 

•  Overlap between InAs CB and GaSb 
VB enables interband devices 

•  Tremendous flexibility in artificially 
designed materials / device structures 

–  Arsenides 
–  Antimonides 
–  Arsenide-Antimonides 
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GaSb Substrate Development 

•  GaSb substrate available commercially in 2, 3, and 4-inch formats 
–  Cost: <$1,000 for a 3-inch substrate 
–  US and UK suppliers 

•  Detector results demonstrated on 5 and 6-inch substrates 
•  Low defect density 

 

2-inch 3-inch 4-inch 5-inch 
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Antimonide Type-II Superlattices 

•  Band gap can be made smaller than constituent bulk semiconductors 
•  Continuously adjustable band gap / λcutoff  by varying layer widths 

–  Covering SWIR, MWIR, LWIR, and VLWIR 

•  Sufficiently large absorption coefficient to achieve ample QE 
•  Dark current reduction in superlattice  

–  Can be engineered for Auger suppression  
–  Less susceptible to tunneling reduction 

•  III-V semiconductor challenges 
–  Generation-recombination (G-R) dark current due to SRH processes 
–  Surface leakage dark current without good passivation  

Adjustable λcutoff 

EC

EV

InAsGa(In)Sb

Heavy-hole 
miniband

Conduction 
miniband

Light-hole 
miniband

Review Book Chapter:   
“Type-II Superlattice Infrared Detectors”,    
D. Z. Ting, A. Soibel, L. Höglund, J. Nguyen, C. J. Hill, 
A. Khoshakhlagh, and S. D. Gunapala, 
Semiconductors and Semimetals 84,  pp.1-57 (2011). 



14 dzt 

Jet Propulsion Laboratory
California Institute of Technology

Copyright	2017. All rights reserved. 

Unipolar Barrier Detector Architecture: 
Addressing III-V Challenges 

•  Maimon & Wicks “nBn detector, an infrared detector with 
reduced dark current and higher operating temperature”, 
Appl Phys Lett. (2006)  
–  240 citations on Web of Science as of June 2017 

•  Arguably the most influential paper in infrared detectors in the past decade 

–  The nBn and, in general, unipolar barrier infrared detectors (XBn, 
pBp, DH, CBIRD, …) have been implemented in a wide variety of 
materials systems by research groups world-wide.  

•  The unipolar barrier in nBn blocks electrons but not holes 
–  Leads to G-R and surface leakage dark current suppression 

Contact 

Unipolar electron barrier 

n-type Absorber 

B 

n n 



15 dzt 

Jet Propulsion Laboratory
California Institute of Technology

Copyright	2017. All rights reserved. 

G-R Dark Current Suppression in nBn 

•  Conventional p-n diode 
–  Defects in the band gap leads to SRH processes and G-R dark current in 

depletion region 
–  In many cases (e.g., InAs), surface of p-type layer inverts to n-type, 

leading to surface leakage current path 
•  The nBn 

–  SRH processes are drastically reduced in wide-band-gap barrier region 
–  Suppresses G-R dark current  
–  Photocurrent flows un-impeded  
–  Barrier also blocks electron surface leakage current 
–  Resulting in higher operating temperature / sensitivity 
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Example of T2SL based Unipolar Barrier Detector: 
Complementary Barrier Infrared Detector (CBIRD) 

•  Complementary Barrier Infrared 
Detector (CBIRD) 

•  p-type LWIR superlattice 
absorber  

 

•  unipolar hole barrier (hB) 
–  widely adopted 

•  unipolar electron barrier (eB) 

•  Both barriers are superlattice-
based 

•  Electron and hole barrier functions 
–  Careful control of doping profile and placement of electrical (N-P) junction 

inside hB suppresses G-R dark current without disrupting the extraction of 
minority carriers 

–  eB suppresses minority carrier injection (exclusion) 
–  eB serves as a BSF layer; also suppresses electron surface leakage 

Ting et al., Appl. Phys. Lett.  95, 023508 (2009);    102, 121109 (2013) 
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CBIRD Device Characteristics 

•  Discrete 200 µm × 200 µm devices 
•  9.8 mm cutoff   (50% peak QE) 
•  QE=40% (λ=8.5 µm, no AR coating) 
•  Zero-bias turn-on 
•  Jd( 0.1V, 77K) = 0.8x10-5 A/cm2  
•  Near-diffusion-limited dark current behavior to below 77K 

 

Additional studies: 
•  Gain and noise: Soibel et al., Appl. Phys. Lett.  96, 111102 

(2010)  
•  Proton radiation effect: Soibel et al., Appl. Phys. Lett.  107, 

261102 (2015)  

!
ISC 0903 DI, 320x256, 30 mm pitch 
NEDT – 18.6 mK (f/2, 300K) 
[ Rafol et al., JQE 48, 878 (2012) ] 

Ting et al., Appl. Phys. Lett. 102, 121109 (2013) 

No A/R coating 



18 dzt 

Jet Propulsion Laboratory
California Institute of Technology

Copyright	2017. All rights reserved. 

JPL T2SL Barrier Infrared Detector (BIRD) FPAs 

•  Successfully implemented FPAs with a variety of λcutoff and formats 
•  High operability/uniformity routinely achieved, MWIR to VLWIR. 

λc ~ 5.4 µm 

140 K 

99.8% operability (320 x 256)   

λc ~ 11 
µm 78 K 

λc ~ 11 µm 

78 K 

99.4% operability (1280 x 720 format)   

99.1% operability (640 x 512)   

99.94% / 99.95% operability (320 x 256 switchable)   

λc ~ 
12.4 µm 

λc ~ 
5.1 µm 

61 K 

Ting et al., Proc SPIE 10177, 101770N (2017) 
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T2SL BIRD FPA Development for  
Earth Science Applications 

•  CubeSat Infrared Atmospheric Sounder 
(CIRAS) 
–  High Operating Temperature (HOT) BIRD 

MWIR (λcutoff ~5.3 µm) FPA  

•  Hyperspectral Thermal Emission Spectrometer (HyTES) 
–  LWIR (λcutoff ~12 µm) BIRD FPA to replace existing QWIP FPA 
–  Higher QE, lower dark current, higher operating temperature 
–  Retaining uniformity, operability, temporal stability … 

•  SLI-T: Long Wavelength Infrared FPA for Land Imaging 
–  VLWIR (λcutoff ~13 µm) BIRD FPA 
–  Goal: Significantly higher operating temperature than QWIP FPA 
–  Plans for demonstrating a small sensor core as well as a very 

large format FPAs in collaboration with industry partner 
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Summary 

•  Recent advances in III-V semiconductor IR detectors 
–  Type-II superlattice (and bulk alloy) provides continuously 

adjustable cutoff wavelength from SWIR to VLWIR 
–  Unipolar barrier device architecture enhances detector 

performance 

•  MWIR to VLWIR type-II superlattice barrier infrared 
detector (BIRD) FPAs routinely achieve high operability 
and uniformity   

•  Meeting a variety of Earth Science infrared FPA needs 


